मान लीजिए कि $R , Q$ से $Q$ में $R =\{(a, b): a, b \in Q$ तथा $a-b \in Z \} .$ द्वारा परिभाषित, एक संबंध है। सिद्ध कीजिए कि

$(a, b) \in R$ का तात्पर्य है कि $(b, a) \in R$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a, b) \in R$ implies that $a-b \in Z .$ So, $b-a \in Z .$ Therefore $(b, a) \in R$

Similar Questions

आकृति, समुच्चय $P$ से $Q$ का एक संबंध दर्शाती है। इस संबंध को रोस्टर रूप में लिखिए। इसके प्रांत तथा परिसर क्या हैं ?

मान लीजिए कि $A =\{1,2,3,4\}, B =\{1,5,9,11,15,16\}$ और $f=\{(1,5),(2,9),(3,1),(4,5), (2,11)\}$. क्या निम्नलिखित कथन सत्य हैं ?

$f, A$ से $B$ में एक संबंध है।

प्रत्येक दशा में अपने उत्तर का औचित्य बतलाइए ।

नीचे आकृति में समुच्चय $P$ और $Q$ के बीच एक संबंध दर्शाया गया है। इस संबंध को समुच्चय निर्माण रूप में

मान लीजिए कि $A =\{1,2,3, \ldots, 14\} \cdot R =\{(x, y): 3 x-y=0,$ जहाँ $x, y \in A \}$ द्वारा, $A$ से $A$ का एक संबंध $R$ लिखिए। इसके प्रांत, सहप्रांत और परिसर लिखिए।

मान लीजिए कि $R , Z$ पर, $R =\{(a, b): a, b \in Z , a-b$ एक पूर्णाक है $\},$ द्वारा परिभाषित एक संबंध है। $R$ के प्रांत तथा परिसर ज्ञात कीजिए।