જો $A=\{1,2\}$ અને $B=\{3,4\}$ તો $A$ થી $B$ ના સંબંધની સંખ્યા શોધો.
$R$ એ $N$ થી $N$ નો સંબંધ છે. $R = \{ (a,b):a,b \in N$ અને $a = {b^2}\} $ થાય તે રીતે વ્યાખ્યાયિત છે, તો શું નીચેનાં વિધાનો સત્ય છે? જો $(a, b) \in R ,(b, c) \in R$ તો $(a, c) \in R$ પ્રત્યેક વિધાનમાં તમારા જવાબની સત્યાર્થતા ચકાસો.
જો $A=\{1,2,3,4,5,6\}$, $R=\{(x, y): y=x+1\}$ થાય તે રીતે સંબંધ $R, A$ થી $A$ પર વ્યાખ્યાયિત છે, તો આ સંબંધને કિરણ આકૃતિ દ્વારા દર્શાવો.
જો $R$ એ $Q$ થી $Q$ પરનો $R=\{(a, b): a, b \in Q$ અને $a-b \in Z \}$ થાય તે રીતે વ્યાખ્યાયિત સંબંધ છે. તો બતાવો કે, જો $(a, b) \in R$ અને $(b, c) \in R$ તો $(a, c) \in R$
$A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$ અને $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$ તો શું નીચેના વિધાનો સત્ય છે ? $f$ એ $A$ થી $B$ નો સંબંધ છે. પ્રત્યેક વિકલ્પમાં તમારા જવાબની સત્યાર્થતા ચકાસો.