Diagram shows symmetrically placed rectangular insulators with uniformly charged distributions of equal magnitude. At the origin, the net field net ${\vec E_{net}}$ is :-
aligned with the negative $x$ -axis.
aligned with the negative $y$ -axis.
aligned with the positive $y$ -axis.
aligned with the positive $x$ -axis.
A charged ball $B$ hangs from a silk thread $S$, which makes an angle $\theta $ with a large charged conducting sheet $P$, as shown in the figure. The surface charge density $\sigma $ of the sheet is proportional to
The surface charge density of a thin charged disc of radius $R$ is $\sigma $. The value of the electric field at the centre of the disc is $\frac{\sigma }{{2\,{ \in _0}}}$. With respect to the field at the centre, the electric field along the axis at a distance $R$ from the centre of the disc
As shown in the figure, a particle A of mass $2\,m$ and carrying charge $q$ is connected by a light rigid rod of length $L$ to another particle $B$ of mass $m$ and carrying charge $-q.$ The system is placed in an electric field $\vec E$ . The electric force on a charge $q$ in an electric field $\vec E$ is $\vec F = q \vec E $ . After the system settles into equilibrium, one particle is given a small push in the transverse direction so that the rod makes a small angle $\theta_0$ with the electric field. Find maximum tension in the rod.
Give physical meaning of electric field.
A thin conducting ring of radius $R$ is given a charge $+Q.$ The electric field at the centre $O$ of the ring due to the charge on the part $AKB$ of the ring is $E.$ The electric field at the centre due to the charge on the part $ACDB$ of the ring is