Dimensional formula for volume elasticity is
${M^1}{L^{ - 2}}{T^{ - 2}}$
${M^1}{L^{ - 3}}{T^{ - 2}}$
${M^1}{L^2}{T^{ - 2}}$
${M^1}{L^{ - 1}}{T^{ - 2}}$
The focal power of a lens has the dimensions
A force defined by $F=\alpha t^2+\beta t$ acts on a particle at a given time $t$. The factor which is dimensionless, if $\alpha$ and $\beta$ are constants, is:
Choose the correct match
List I |
List II |
---|---|
$(i)$ Curie |
$(A)$ $ML{T^{ - 2}}$ |
$(ii)$ Light year |
$(B)$ $M$ |
$(iii)$ Dielectric strength |
$(C)$ Dimensionless |
$(iv)$ Atomic weight |
$(D)$ $T$ |
$(v)$ Decibel |
$(E)$ $M{L^2}{T^{ - 2}}$ |
$(F)$ $M{T^{ - 3}}$ |
|
$(G)$ ${T^{ - 1}}$ |
|
$(H)$ $L$ |
|
$(I)$ $ML{T^{ - 3}}{I^{ - 1}}$ |
|
$(J)$ $L{T^{ - 1}}$ |
Dimensions of $\frac{1}{{{\mu _0}{\varepsilon _0}}}$, where symbols have their usual meaning, are
In the relation $y = a\cos (\omega t - kx)$, the dimensional formula for $k$ is