7.Alternating Current
easy

Discuss power in $AC$ circuit containing only capacitor. 

Option A
Option B
Option C
Option D

Solution

The instantaneous power supplied to the capacitor is,

$p_{c}=\mathrm{IV}=\mathrm{I}_{\mathrm{m}} \cos (\omega t) \mathrm{V}_{\mathrm{m}} \sin (\omega t)$

$=\mathrm{I}_{\mathrm{m}} \mathrm{V}_{\mathrm{m}} \cos (\omega t) \sin (\omega t)$

$=\frac{\mathrm{I}_{\mathrm{m}} \mathrm{V}_{\mathrm{m}}}{2} \cdot(2 \cos \omega t \sin \omega t)$

$=\frac{\mathrm{I}_{\mathrm{m}} \mathrm{V}_{\mathrm{m}}}{2} \sin (2 \omega t)$

Average power,

$\mathrm{P}_{\mathrm{C}}=\left\langle\frac{\mathrm{I}_{\mathrm{m}} \mathrm{V}_{\mathrm{m}} \sin 2 \omega t}{2}\right\rangle=\frac{\mathrm{I}_{\mathrm{m}} \mathrm{V}_{\mathrm{m}}}{2}\langle\sin 2 \omega t\rangle$

Since $\sin (2 \omega t)=0$ over a complete cycle. This is explained by figure in detail.

$\therefore$ Average power $\mathrm{P}_{\mathrm{C}}=0$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.