Domain of $f (x)$ = $\sqrt {{{\log }_2}\left( {\frac{{10x - 4}}{{4 - {x^2}}}} \right) - 1} $ , is

  • A

    $\left[ { - 6, - 2} \right) \cup \left[ {1,2} \right)$

  • B

    $\left[ { - 6,2} \right)$

  • C

    $\left[ { - 6,1} \right)$

  • D

    $\left( { - 2,2} \right)$

Similar Questions

Show that the function $f: R_* \rightarrow R_*$ defined by $f(x)=\frac{1}{x}$ is one-one and onto, where $R_*$ is the set of all non-zero real numbers. Is the result true, if the domain $R_*$ is replaced by $N$ with co-domain being same as $R _*$ ?

The period of the function $f(x) = \log \cos 2x + \sin 4x$ is :-

Let $E = \{ 1,2,3,4\} $ and $F = \{ 1,2\} $.Then the number of onto functions from $E$ to $F$ is

  • [IIT 2001]

Show that the function $f: N \rightarrow N ,$ given by $f(1)=f(2)=1$ and $f(x)=x-1$ for every $x>2,$ is onto but not one-one.

Let $A = \{ {x_1},\,{x_2},\,............,{x_7}\} $ and $B = \{ {y_1},\,{y_2},\,{y_3}\} $ be two sets containing seven and three distinct elements respectively. Then the total number of functions $f : A \to B$ that are onto, if there exist exactly three elements $x$ in $A$ such that $f(x)\, = y_2$, is equal to

  • [JEE MAIN 2015]