Let $c, k \in R$. If $f(x)=(c+1) x^{2}+\left(1-c^{2}\right) x+2 k$ and $f(x+y)=f(x)+f(y)-x y$, for all $x, y \in R$, then the value of $|2( f (1)+ f (2)+ f (3)+\ldots \ldots+ f (20)) \mid$ is equal to

  • [JEE MAIN 2022]
  • A

    $3365$

  • B

    $3375$

  • C

    $3385$

  • D

    $3395$

Similar Questions

If $f\left( x \right) = {\log _e}\,\left( {\frac{{1 - x}}{{1 + x}}} \right)$, $\left| x \right| < 1$, then $f\left( {\frac{{2x}}{{1 + {x^2}}}} \right)$ is equal to

  • [JEE MAIN 2019]

If $f(x) = \frac{x}{{x - 1}}$, then $\frac{{f(a)}}{{f(a + 1)}} = $

If $f:R \to R$ and $g:R \to R$ are given by $f(x) = \;|x|$ and $g(x) = \;|x|$ for each $x \in R$, then $\{ x \in R\;:g(f(x)) \le f(g(x))\} = $

Let $E = \{ 1,2,3,4\} $ and $F = \{ 1,2\} $.Then the number of onto functions from $E$ to $F$ is

  • [IIT 2001]

Let $f(x) = \frac{{x\,\, - \,\,1}}{{2\,{x^2}\,\, - \,\,7x\,\, + \,\,5}}$ . Then :