$f (x)$ = $\sqrt {{{\log }_2}\left( {\frac{{10x - 4}}{{4 - {x^2}}}} \right) - 1} $ નો પ્રદેશગણ મેળવો.
$\left[ { - 6, - 2} \right) \cup \left[ {1,2} \right)$
$\left[ { - 6,2} \right)$
$\left[ { - 6,1} \right)$
$\left( { - 2,2} \right)$
વિધેય $f$ એ ગણ $A=\left\{x \in N: x^{2}-10 x+9 \leq 0\right\}$ થી ગણ $B=\left\{n^{2}: n \in N\right\}$ કે જેથી દરેક $x \in A$ માટે $f(x) \leq(x-3)^{2}+1$ તેવા વિધેય $f$ ની સંખ્યા મેળવો.
વાસ્તવિક વિધેય $f(x)$ એ સમીકરણ $f(x - y) = f(x)f(y) - f(a - x)f(a + y)$ નું પાલન કરે છે જ્યાં $a$ એ અચળ છે અને $f(0) = 1$, $f(2a - x) = . ...$
${\sin ^{ - 1\,}}\left( {\frac{{1 + {x^2}}}{{2 + {x^2}}}} \right)$ નો વિસ્તાર મેળવો.
વિધેય $f(x) = \frac{x}{{1 + \left| x \right|}},\,x \in R,$ નો વિસ્તાર મેળવો.
જો $h\left( x \right) = \left[ {\ln \frac{x}{e}} \right] + \left[ {\ln \frac{e}{x}} \right]$ જ્યા [.] મહત્તમ વિધેય હોય તો નિચેનામાંથી ક્યુ ખોટુ છે ?