दीर्घवृत्त ${x^2} + 3{y^2} = 6$ के केन्द्र से $2$ इकाई दूरी पर दीर्घवृत्त पर स्थित किसी बिन्दु का उत्केन्द्र कोण है
$\frac{\pi }{4}$
$\frac{\pi }{3}$
$\frac{{3\pi }}{4}$
$(a)$ और $(c)$ both
यदि दीर्घवृत्त $\frac{{{x^2}}}{{14}} + \frac{{{y^2}}}{5} = 1$ के बिन्दु $P(\theta )$ पर खींचे गये अभिलम्ब इसे पुन: $Q(2\theta )$ पर प्रतिच्छेद करते हैं, तो $\cos \theta $ बराबर है
दीर्घवृत्त $3{x^2} + 4{y^2} - 12x - 8y + 4 = 0$ की नाभियों के निर्देशांक हैं
एक दीर्घवृत्त $\frac{x^2}{a^2}+\frac{y^2}{b^x}=1(a > b)$, एवं एक परवलय $x^2=4(y+b)$ इस प्रकार हैं कि दीर्घवृत्त की दो नाभियाँ एवं परवलय के नाभिलम्ब के अन्तःबिंदु $(end\,points)$ एक वर्ग के शीर्ष हैं | दीर्घर्वृत की उत्केन्द्रता ?
यदि दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के किसी बिन्दु $P$ पर खींचे गये अभिलम्ब निर्देशांकों को $G$ व $g$ पर मिलते हैं, तो $PG:Pg = $
माना दीर्घवृत्त $\frac{ x ^2}{2}+\frac{ y ^2}{4}=1$ के बिंदुओं $P$ तथा $Q$ पर स्पर्श रेखाएँ बिंदु $R (\sqrt{2}, 2 \sqrt{2}-2)$ पर मिलती हैं। यदि दार्घवृत्त के ॠणात्मक दीर्घ अक्ष पर नाभि $S$ है, तो $SP ^2+ SQ ^2$ बराबर है