दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ व सरल रेखा $y = mx + c$ वास्तविक बिन्दुओं पर प्रतिच्छेद करते हैं यदि
${a^2}{m^2} < {c^2} - {b^2}$
${a^2}{m^2} > {c^2} - {b^2}$
${a^2}{m^2} \ge {c^2} - {b^2}$
$c \ge b$
माना कि $T_1$ एवं $T_2$ दीर्घवृत (ellipse) $E: \frac{x^2}{6}+\frac{y^2}{3}=1$ एवं परवलय (parabola) $P: y^2=12 x$ की दो भिन्न उभयनिष्ठ स्पर्श रेखाएं (distinct common tangents) हैं। माना कि स्पर्श रेखा $T_1, P$ एवं $E$ को क्रमशः बिन्दुओं $A_1$ एवं $A_2$ पर स्पर्श करती है और स्पर्श रेखा $T_2, P$ एवं $E$ को क्रमशः बिन्दुओं $A_4$ एवं $A_3$ पर स्पर्श करती है। तब निम्न में से कौन सा(से) कथन सत्य है(हैं)?
$(A)$ चतुर्भुज $A_1 A_2 A_3 A_4$ का क्षेत्रफल $35$ वर्ग इकाई है
$(B)$ चतुर्भुज $A_1 A_2 A_3 A_4$ का क्षेत्रफल $36$ वर्ग इकाई है
$(C)$ स्पर्श रेखाएं $T_1$ एवं $T_2, x$-अक्ष को बिंदु $(-3,0)$ पर मिलती हैं
$(D)$ स्पर्श रेखाएं $T_1$ एवं $T_2, x$-अक्ष को बिंदु $(-6,0)$ पर मिलती हैं
एक दीर्घवृत्त $\frac{x^2}{a^2}+\frac{y^2}{b^x}=1(a > b)$, एवं एक परवलय $x^2=4(y+b)$ इस प्रकार हैं कि दीर्घवृत्त की दो नाभियाँ एवं परवलय के नाभिलम्ब के अन्तःबिंदु $(end\,points)$ एक वर्ग के शीर्ष हैं | दीर्घर्वृत की उत्केन्द्रता ?
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष के अंत्य बिंदु $(\pm 3,0),$ लघु अक्ष के अंत्य बिंदु $(0,±2)$
रेखा $y = mx + c$ दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ का अभिलम्ब है, यदि $c = $
दो समुच्चय $A$ तथा $B$ निम्न प्रकार के हैं
$A=\{(a, b) \in R \times R:|a-5|< 1$ तथा $|b-5|< 1\}$
$B=\left\{(a, b) \in R \times R: 4(a-6)^{2}+9(b-5)^{2} \leq 36\right\}$ तो