यदि दीर्घवृत्त का केन्द्र $(0, 0)$, एक नाभि $(0, 3)$ तथा अर्ध दीर्घ अक्ष $5$ हो, तो उसका समीकरण है
$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{25}} = 1$
$\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1$
$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{{25}} = 1$
इनमें से कोई नहीं
उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ $( \pm 5,\;0)$ तथा एक नियता $5x = 36$ है, होगा
यदि $OB$, एक दीर्घवृत्त का अर्ध लघुअक्ष है, $F _{1}$ तथा $F _{2}$ उसकी नाभियाँ हैं तथा $F _{1} B$ तथा $F _{2} B$ के बीच का कोण एक समकोण है, तो दीर्घवृत्त की उत्केंद्रता का वर्ग है
यदि सरल रेखा $y = mx + c$, दीर्घवृत्त $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ की स्पर्श रेखा हो, तो $c$ का मान होगा
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष के अंत्य बिंदु $(\pm 3,0),$ लघु अक्ष के अंत्य बिंदु $(0,±2)$
एक दीर्घवृत्त की उत्केन्द्रता $\frac{2}{3}$, नाभिलम्ब $5$ तथा केन्द्र $(0, 0)$ हैं, तो दीर्घवृत्त का समीकरण है