આઇન્સ્ટાઇનના પ્રખ્યાત સાપેક્ષવાદને આધારે દળ $(m)$ એ ઊર્જા $(E)$ સાથે $E = mc^2$ સંબંધથી સંકળાયેલ છે.
જ્યાં $c =$ શૂન્યાવકાશમાં પ્રકાશનો વેગ છે. ન્યુકિલયર ઊર્જાનું મૂલ્ય સૂક્ષ્મ હોય અને તે $Mev$ માં મપાય છે. જ્યાં $1\,MeV = 1.6\times 10^{-13}\,J$ ; જેમાં દ્રવ્યમાન (એટોમિક માસ યુનિટ) $amu$ માં મપાય છે તથા $1\,u = 1.67 \times 10^{-27}\, kg$.
$(a)$ $1\,u = 931.5\, MeV$ મેળવો.
$(b)$ એક વિધાર્થીએ $1\,u = 931.5\, MeV$ લખ્યો છે જે પારિમાણિક દૃષ્ટિએ ખોટો હોવાનું શિક્ષકે કહ્યું છે તો સાચો સંબંધ લખો.
$1 u=1.67 \times 10^{-27} kg$
$E =m c^{2}$
$1.67 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2}$
$=1.67 \times 9 \times 10^{-11} J$
$\therefore E =\frac{1.67 \times 9 \times 10^{-11}}{1.6 \times 10^{-19}} MeV$
$\left[\because 1 eV =1.6 \times 10^{-19} J \right]$
$\therefore E =9.3937 \times 10^{8} eV$
$\therefore E =939.4 \times 10^{6} eV$
$\therefore E \approx 939.4 MeV$
$(b)$ પારિમાણિક દ્રષ્ટિ આ સંબંધ ખોટો છે.
$[u]=\left[ M ^{1} L ^{0} T ^{0}\right]$
અને $[ eV ]=\left[ M ^{1} L ^{2} T ^{-2}\right]$
તેથી $1 u=931.5 MeV$ સંબંધ ખોટો છે.
સાચો સંબંધ $1 u c^{2}=931.5 MeV$ હોવો જેઈએ.
જો $R, X _{ L }$ અને $X _{ C }$ અનુક્રમે અવરોધ, ઈન્ડકટીવ રિએકટન્સ અને સંધારકીય રીએકટન્સ દર્શાવતા હોય, તો નીચેનામાંથી કયુ પરિમાણરહિત થશે ?
વર્તુળનું સમીકરણ $x^2+y^2=a^2$, જ્યાં $a$ એ ત્રિજ્યા છે, વડે આપવામાં આવે છે. જો ઉગમબિંદુને $(0,0)$ ને બદલે નવા મૂલ્ય આગળ ખસેડતા આ સમીકરણ બદલાય છે. નવા સમીકરણ : $(x-A t)^2+\left(y-\frac{t}{B}\right)^2=a^2$ માટે $A$ અને $B$ નાં સાચા પરિણામો ......... થશે. $t$ નું પરિમાણ $\left[ T ^{-1}\right]$ વડે આપવામાં આવે છે.
નીચે પૈકી કયું સમીકરણ પારિમાણિક રીતે ખોટું થાય?
જ્યાં $t=$સમય, $h=$ઊંચાઈ, $s=$પૃષ્ઠતાણ, $\theta=$ખૂણો, $\rho=$ઘનતા, $a, r=$ત્રિજ્યા, $g=$ગુરુત્વ પ્રવેગ, ${v}=$કદ, ${p}=$દબાણ, ${W}=$કાર્ય, $\Gamma=$ટોર્ક, $\varepsilon=$પરમિટિવિટી, ${E}=$વિદ્યુતક્ષેત્ર, ${J}=$પ્રવાહઘનતા, ${L}=$લંબાઈ
એક પદાર્થ પ્રવાહીમાં ગતિ કરે છે. તેના પર લાગતું શ્યાનતા બળ વેગના સમપ્રમાણમાં છે તો આ સમપ્રમાણતાના અચળાંકનું પારિમાણિક સૂત્ર શું થાય?