કોઇ પદ્ધતિમાં પ્રકાશનો વેગ $(c)$, ગુરુત્વાકર્ષણ અચળાંક $(G)$ અને પ્લાન્ક અચળાંક $(h)$ ને મૂળભૂત એકમો તરીકે લીધેલા છે. તો આ નવી પદ્ધતિ મુજબ સમયનું પરિમાણિક સૂત્ર શુ થાય?
${G^{1/2}}{h^{1/2}}{c^{ - 5/2}}$
${G^{ - 1/2}}{h^{1/2}}{c^{1/2}}$
${G^{1/2}}{h^{1/2}}{c^{ - 3/2}}$
${G^{1/2}}{h^{1/2}}{c^{1/2}}$
લિસ્ટ $-I$ | લિસ્ટ $-II$ |
$(a)$ કેપેસીટન્સ, $C$ | $(i)$ ${M}^{1} {L}^{1} {T}^{-3} {A}^{-1}$ |
$(b)$ શૂન્યાવકાશની પરમિટિવિટી, $\varepsilon_{0}$ | $(ii)$ ${M}^{-1} {L}^{-3} {T}^{4} {A}^{2}$ |
$(c)$ શૂન્યાવકાશની પરમીએબીલીટી, $\mu_{0}$ | $(iii)$ ${M}^{-1} L^{-2} T^{4} A^{2}$ |
$(d)$ વિદ્યુતક્ષેત્ર, $E$ | $(iv)$ ${M}^{1} {L}^{1} {T}^{-2} {A}^{-2}$ |
ઉષ્મા ઊર્જાનો રાશિ $Q$, પદાર્થને ગરમ કરવા માટે વપરાય છે તે તેના દળ $m$, તેની ચોક્કસસ ઉષ્મા ક્ષમતા $s$ અને પદાર્થના તાપમાન $\Delta T$ માં ફેરફાર પર આધાર રાખે છે. પારિમાણિક પદ્ધતિનો ઉપયોગ કરીને, $s$ માટે સૂત્ર શોધો. ($[s] = \left[ L ^2 T -\right.$ $\left.{ }^2 K ^{-1}\right]$ એ આપેલ છે.)
$l$ લંબાઈ અને $r$ ત્રિજ્યા ધરાવતી નળીમાંથી દર સેકન્ડે બહાર નીકળતા પ્રવાહીનું કદ $V\, = \,\frac{{\pi p{r^4}}}{{8\eta l}}$ માં છે, જ્યાં $p$ $=$ નળીના બે છેડા વચ્ચેના દબાણનો તફાવત અને $\eta $ $=$ પ્રવાહીનો શ્યાનતા ગુણાંક છે જેનું પારિમાણિક સૂત્ર $[M^1L^{-1}T^{-1}] $ છે તો પારિમાણિક દૃષ્ટિએ આ સમીકરણ સાચું છે કે ખોટું ?
નીચેનામાંથી કયું સૂત્ર પારિમાણિક રીતે ખોટ્ટું છે?