Electric field intensity at a point in between two parallel sheets with like charges of same surface charge densities $(\sigma )$ is
$\frac{\sigma }{{2{\varepsilon _0}}}$
$\frac{\sigma }{{{\varepsilon _0}}}$
Zero
$\frac{{2\sigma }}{{{\varepsilon _0}}}$
Two non-conducting solid spheres of radii $R$ and $2 \ R$, having uniform volume charge densities $\rho_1$ and $\rho_2$ respectively, touch each other. The net electric field at a distance $2 \ R$ from the centre of the smaller sphere, along the line joining the centres of the spheres, is zero. The ratio $\frac{\rho_1}{\rho_2}$ can be ;
$(A)$ $-4$ $(B)$ $-\frac{32}{25}$ $(C)$ $\frac{32}{25}$ $(D)$ $4$
The dimensions of an atom are of the order of an Angstrom. Thus there must be large electric fields between the protons and electrons. Why, then is the electrostatic field inside a conductor zero ?
Let $\rho (r)\, = \frac{Q}{{\pi {R^4}}}\,r$ be the volume charge density distribution for a solid sphere of radius $R$ and total charge $Q$. For a point $'p'$ inside the sphere at distance $r_1$ from the centre of the sphere, the magnitude of electric field is
Consider an atom with atomic number $Z$ as consisting of a positive point charge at the centre and surrounded by a distribution of negative electricity uniformly distributed within a sphere of radius $R$. The electric field at a point inside the atom at a distance $r$ from the centre is
Charges $Q, 2Q$ and $4Q$ are uniformly distributed in three dielectric solid spheres $1,2$ and $3$ of radii $R/2, R$ and $2 R$ respectively, as shown in figure. If magnitudes of the electric fields at point $P$ at a distance $R$ from the centre of spheres $1,2$ and $3$ are $E_1 E_2$ and $E_3$ respectively, then