एकसमान आवेश से आवेशित दो समान्तर प्लेटों के पृष्ठीय आवेश घनत्व समान $(\sigma )$ हैं। प्लेटों के बीच में विद्युत क्षेत्र होगा

  • A

    $\frac{\sigma }{{2{\varepsilon _0}}}$

  • B

    $\frac{\sigma }{{{\varepsilon _0}}}$

  • C

    शून्य

  • D

    $\frac{{2\sigma }}{{{\varepsilon _0}}}$

Similar Questions

त्रिज्या $R$ के गोले के आयतन में विद्युत आवेश का समान वितरण है। इसके केन्द्र से $x$ दूरी पर $x < R$ के लिए, विद्युत क्षेत्र के अनुक्रमानुपाती होगा

  • [AIIMS 1997]

$R$ त्रिज्या के किसी आवेशित चालक गोलीय कोश (खोल) के केन्द्र से $\frac{3 R}{2}$ दूरी पर विधुत क्षेत्र $E$ है। इसके केन्द्र से $\frac{R}{2}$ दूरी पर विधुत क्षेत्र होगा।

  • [AIPMT 2010]

दो $R$ व $2 R$ त्रिज्या वाले अचालक ठोस गोलको को जिन पर क्रमशः $\rho_1$ तथा $\rho_2$ एकसमान आयतन आवेश घनत्व है, एक दूसरे से स्पर्श करते हुए रखा गया है। दोंनो गोलकों के केन्द्रों से गुजरती हुई रेखा खींची जाती है। इस रेखा पर छोटे गोलक के केन्द्र से $2 R$ दूरी पर नेट विद्युत क्षेत्र शून्य है। तब अनुपात $\frac{\rho_1}{\rho_2}$ का मान हो सकता है:

  • [IIT 2013]

दो बड़ी, पतली धातु की प्लेटें एक-दूसरे के समानांतर एवं निकट हैं। इनके भीतरी फलकों पर, प्लेटों के पृष्ठीय आवेश घनत्वों के चिह्न विपरीत हैं तथा इनका परिमाण $17.0 \times 10^{-22} C /$ $m ^{2}$ है।

$(a)$ पहली प्लेट के बाह्य क्षेत्र में, $(b)$ दूसरी प्लेट के बाह्हा क्षेत्र में, तथा $(c)$ प्लेटों के बीच में विद्र

एक त्रिज्या $R_1$ तथा एक समान आवेश घनत्व का गोलाकर आवेश मूल बिन्दु $O$ पर केन्द्रित है। इसमें एक $R_2$ त्रिज्या तथा $P$ पर केन्द्रित एक गोलाकार गुहिका (cavity), जहाँ $O P=a=R_1-R_2$ है, वनाई जाती है। (चित्र देखें)। यदि गुहिका के अन्दर स्थिति $\vec{r}$ पर विधुत क्षेत्र $\overline{ E }(\overrightarrow{ r })$ है, तव सही कथन है (हैं)

  • [IIT 2015]