Electric potential in a region is varying according to the relation $V=\frac{3 x^2}{2}-\frac{y^2}{4}$, where $x$ and $y$ are in metre and $V$ is in volt. Electric field intensity (in $N/C$) at a point $(1 \,m , 2 \,m$ ) is ......

  • A

    $3 \hat{i}-\hat{j}$

  • B

    $-3 \hat{i}+\hat{j}$

  • C

    $6 \hat{i}-2 \hat{j}$

  • D

    $-6 \hat{i}+2 \hat{j}$

Similar Questions

An electron enters between two horizontal plates separated by $2\,mm$ and having a potential difference of $1000\,V$. The force on electron is

The electrostatic potential inside a charged spherical ball is given by $\phi= a{r^2} + b$ where $r$ is the distance from the centre and $a, b$ are constants. Then the charge density inside the ball is:

  • [AIEEE 2011]

Two parallel plates separated by a distance of $5\,mm$ are kept at a potential difference of $50\,V.$ A particle of mass ${10^{ - 15}}\,kg$ and charge ${10^{ - 11}}\,C$ enters in it with a velocity ${10^7}\,m/s.$ The acceleration of the particle will be

If the electric potential at any point $(x, y, z) \,m$ in space is given by $V =3 x ^{2}$ volt. The electric field at the point $(1,0,3) \,m$ will be ............

  • [JEE MAIN 2022]

The potential $V$ is varying with $x$ and $y$ as $V\, = \,\frac{1}{2}\,\left( {{y^2} - 4x} \right)\,volt.$ The field at ($1\,m, 1\,m$ ) is