The potential gradient is a
Vector quantity
Scalar quantity
Conversion factor
Constant
Electric potential at any point is $V = - 5x + 3y + \sqrt {15} z$, then the magnitude of the electric field is
The electric potential $V(x)$ in a region around the origin is given by $V(x) = 4x^2\,volts$ . The electric charge enclosed in a cube of $1\,m$ side with its centre at the origin is (in coulomb)
The potential $V$ is varying with $x$ and $y$ as $V\, = \,\frac{1}{2}\,\left( {{y^2} - 4x} \right)\,volt.$ The field at ($1\,m, 1\,m$ ) is
Figure shows three points $A$, $B$ and $C$ in a region of uniform electric field $\overrightarrow E $. The line $AB$ is perpendicular and $BC$ is parallel to the field lines. Then which of the following holds good. Where ${V_A} > {V_B}$ and ${V_C}$ represent the electric potential at points $A$, $B$ and $C$ respectively
If on the $x$-axis electric potential decreases uniformly from $60 \,V$ to $20 \,V$ between $x=-2 \,m$ to $x=+2 \,m$, then the magnitude of electric field at the origin