Electric potential is given by
$V = 6x - 8x{y^2} - 8y + 6yz - 4{z^2}$
Then electric force acting on $2\,C$ point charge placed on origin will be......$N$
$2$
$6$
$8$
$20$
The electric potential in a region is represented as $V = 2x + 3y -z$ ; then the expression of electric field strength is
In a certain reglon of space with volume $0.2\, m ^{3}$ the electric potential is found to be $5\, V$ throughout. The magnitude of electric field in this region is ______ $N/C$
The potential due to an electrostatic charge distribution is $V(r)=\frac{q e^{-\alpha e r}}{4 \pi \varepsilon_{0} r}$, where $\alpha$ is positive. The net charge within a sphere centred at the origin and of radius $1/ \alpha$ is
A sphere carrying charge of $Q$ having weight $w$ falls under gravity between a pair of vertical plates at a distance of $d$ from each other. When a potential difference $V$ is applied between the plates the acceleration of sphere changes as shown in the figure, to along line $BC$. The value of $Q$ is :-
For a charged spherical ball, electrostatic potential inside the ball varies with $r$ as $V =2 ar ^2+ b$. Here, $a$ and $b$ are constant and $r$ is the distance from the center. The volume charge density inside the ball is $-\lambda a \varepsilon$. The value of $\lambda$ is $...........$. $\varepsilon=$ permittivity of medium.