2. Electric Potential and Capacitance
hard

Equipotential surfaces are shown in figure. Then the electric field strength will be

A$100 \,Vm^{-1}$ along $X$-axis
B$100 \,Vm^{-1}$ along $Y$-axis
C$200 \,Vm^{-1}$ at an angle $120°$ with $X$-axis
D$50 \,Vm^{-1}$ at an angle $120°$ with $X$-axis

Solution

(c) Using $dV = – \overrightarrow E .d\overrightarrow r $
$⇒$ $\Delta V = – E.\Delta r\cos \theta $
$⇒$ $E = \frac{{ – \Delta V}}{{\Delta r\cos \theta }}$
$⇒$ $E = \frac{{ – (20 – 10)}}{{10 \times {{10}^{ – 2}}\cos 120^\circ }}$
$ = \frac{{ – 10}}{{10 \times {{10}^{ – 2}}( – \sin 30^\circ )}} = \frac{{ – {{10}^2}}}{{ – 1/2}} = 200\,V/m$
Direction of $E$ be perpendicular to the equipotential surface i.e. at $120°$ with $x-$axis.
Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.