Electron moves at right angles to a magnetic field of $1.5 \times 10^{-2}\,tesla$ with speed of $6 \times 10^7\,m/s$. If the specific charge of the electron is $1.7 \times 10^{11}\,C/kg$. The radius of circular path will be......$cm$
$3.31$
$4.31$
$1.31$
$2.35$
A proton of mass $1.67 \times {10^{ - 27}}\,kg$ and charge $1.6 \times {10^{ - 19}}\,C$ is projected with a speed of $2 \times {10^6}\,m/s$ at an angle of $60^\circ $ to the $X - $ axis. If a uniform magnetic field of $0.104$ $Tesla$ is applied along $Y - $ axis, the path of proton is
A deutron of kinetic energy $50\, keV$ is describing a circular orbit of radius $0.5$ $metre$ in a plane perpendicular to magnetic field $\overrightarrow B $. The kinetic energy of the proton that describes a circular orbit of radius $0.5$ $metre$ in the same plane with the same $\overrightarrow B $ is........$keV$
The figure shows three situations when an electron moves with velocity $\vec v$ travels through a uniform magnetic field $\vec B$. In each case, what is the direction of magnetic force on the electron
A particle of mass $m$ and charge $\mathrm{q}$, moving with velocity $\mathrm{V}$ enters Region $II$ normal to the boundary as shown in the figure. Region $II$ has a uniform magnetic field B perpendicular to the plane of the paper. The length of the Region $II$ is $\ell$. Choose the correct choice$(s)$.
Figure: $Image$
$(A)$ The particle enters Region $III$ only if its velocity $V>\frac{q / B}{m}$
$(B)$ The particle enters Region $III$ only if its velocity $\mathrm{V}<\frac{\mathrm{q} / \mathrm{B}}{\mathrm{m}}$
$(C)$ Path length of the particle in Region $II$ is maximum when velocity $V=\frac{q / B}{m}$
$(D)$ Time spent in Region $II$ is same for any velocity $V$ as long as the particle returns to Region $I$
One proton beam enters a magnetic field of ${10^{ - 4}}$ $T$ normally, Specific charge = ${10^{11}}\,C/kg.$ velocity = ${10^7}\,m/s$. What is the radius of the circle described by it....$m$