Electrons moving with different speeds enter a uniform magnetic field in a direction perpendicular to the field., time periods of rotation will be :

  • A

    same for all electrons

  • B

    greater for the faster electrons

  • C

    smaller for the faster electrons

  • D

    either $(b)$ or $(c)$ depending on the magnitude of the magnetic field

Similar Questions

An $\alpha$-particle (mass $4 amu$ ) and a singly charged sulfur ion (mass $32 amu$ ) are initially at rest. They are accelerated through a potential $V$ and then allowed to pass into a region of uniform magnetic field which is normal to the velocities of the particles. Within this region, the $\alpha$-particle and the sulfur ion move in circular orbits of radii $r_\alpha$ and $r_5$, respectively. The ratio $\left(r_s / r_\alpha\right)$ is. . . . .$(4)$

  • [IIT 2021]

A charged particle of charge $\mathrm{e}$ and mass $\mathrm{m}$ is moving in an electric field ${{\rm{\vec E}}}$ and magnetic field ${{\rm{\vec B}}}$ Construct dimensionless quantities and quantities of dimension [T]-1

An electron is accelerated by a potential difference of $12000\, volts$. It then enters a uniform magnetic field of ${10^{ - 3}}\,T$ applied perpendicular to the path of electron. Find the radius of path. Given mass of electron $ = 9 \times {10^{ - 31}}\,kg$ and charge on electron $ = 1.6 \times {10^{ - 19}}\,C$

Two charged particles traverse identical helical paths in a completely opposite sense in a uniform magnetic field $B = B_0 \hat k$ .

An electron having a charge e moves with a velocity $v$ in positive $x$ direction. A magnetic field acts on it in positive $y$ direction. The force on the electron acts in (where outward direction is taken as positive $z$-axis).