If a positive ion is moving, away from an observer with same acceleration, then the lines of force of magnetic induction will be

  • A

    closed curves in anti-clockwise direction.

  • B

    closed curves in clockwise direction.

  • C

    in the direction of path of positive ion in straight and parallel line, going away from the observer.

  • D

    in direction of path of positive ion, in straight and parallel lines towards the observer.

Similar Questions

A charged particle moves along circular path in a uniform magnetic field in a cyclotron. The kinetic energy of the charged particle increases to $4$ times its initial value. What will be the ratio of new radius to the original radius of circular path of the charged particle

  • [JEE MAIN 2022]

An electron has mass $9 \times {10^{ - 31}}\,kg$ and charge $1.6 \times {10^{ - 19}}C$ is moving with a velocity of ${10^6}\,m/s$, enters a region where magnetic field exists. If it describes a circle of radius $0.10\, m$, the intensity of magnetic field must be

An electron is allowed to move with constant velocity along the axis of current carrying straight solenoid.

$A.$ The electron will experience magnetic force along the axis of the solenoid.

$B.$ The electron will not experience magnetic force.

$C.$ The electron will continue to move along the axis of the solenoid.

$D.$ The electron will be accelerated along the axis of the solenoid.

$E.$ The electron will follow parabolic path-inside the solenoid.

Choose the correct answer from the options given below:

  • [JEE MAIN 2023]

A homogeneous electric field $E$ and a uniform magnetic field $\mathop B\limits^ \to $ are pointing in the same direction. A proton is projected with its velocity parallel to $\mathop E\limits^ \to $. It will

A uniform magnetic field $B$ exists in the region between $x=0$ and $x=\frac{3 R}{2}$ (region $2$ in the figure) pointing normally into the plane of the paper. A particle with charge $+Q$ and momentum $p$ directed along $x$-axis enters region $2$ from region $1$ at point $P_1(y=-R)$. Which of the following option(s) is/are correct?

$[A$ For $B>\frac{2}{3} \frac{p}{QR}$, the particle will re-enter region $1$

$[B]$ For $B=\frac{8}{13} \frac{\mathrm{p}}{QR}$, the particle will enter region $3$ through the point $P_2$ on $\mathrm{x}$-axis

$[C]$ When the particle re-enters region 1 through the longest possible path in region $2$ , the magnitude of the change in its linear momentum between point $P_1$ and the farthest point from $y$-axis is $p / \sqrt{2}$

$[D]$ For a fixed $B$, particles of same charge $Q$ and same velocity $v$, the distance between the point $P_1$ and the point of re-entry into region $1$ is inversely proportional to the mass of the particle

  • [IIT 2017]