Evaluate $\Delta=\left|\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Solution Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1},$ we get

$\Delta=\left|\begin{array}{ccc}
1 & a & b c \\
0 & b-a & c(a-b) \\
0 & c-a & b(a-c)
\end{array}\right|$

Taking factors $(b-a)$ and $(c-a)$ common from $R_{2}$ and $R_{y}$ respectively, we get

$\Delta=(b-a)(c-a)\left|\begin{array}{ccc}
1 & a & b c \\
0 & 1 & -c \\
0 & 1 & -b
\end{array}\right|$

$=(b-a)(c-a)[(-b+c)]$ (Expanding along first column)

$=(a-b)(b-c)(c-a)$

Similar Questions

Let $a, b, c, d$ be in arithmetic progression with common difference $\lambda$. If

$\left|\begin{array}{lll} x+a-c & x+b & x+a \\ x-1 & x+c & x+b \\ x-b+d & x+d & x+c \end{array}\right|=2$

then value of $\lambda^{2}$ is equal to $.....$

  • [JEE MAIN 2021]

If $a,b,c$ are distinct and rational numbers then $\left| {\begin{array}{*{20}{c}}
{\left( {{a^2} + {b^2} + {c^2}} \right)}&{ab + bc + ca}&{ab + bc + ca}\\
{ab + bc + ca}&{\left( {{a^2} + {b^2} + {c^2}} \right)}&{\left( {bc + ca + ab} \right)}\\
{ab + bc + ca}&{\left( {ab + bc + ca} \right)}&{\left( {{a^2} + {b^2} + {c^2}} \right)}
\end{array}} \right|$ is always 

Using properties of determinants, prove this:

$\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q\end{array}\right|=1$

Let $P$ be a matrix of order $3 \times 3$ such that all the entries in $P$ are from the set $\{-1,0,1\}$. Then, the maximum possible value of the determinant of $P$ is. . . . . . .

  • [IIT 2018]

The solutions of the equation $\left|\begin{array}{ccc}1+\sin ^{2} x & \sin ^{2} x & \sin ^{2} x \\ \cos ^{2} x & 1+\cos ^{2} x & \cos ^{2} x \\ 4 \sin 2 x & 4 \sin 2 x & 1+4 \sin 2 x\end{array}\right|=0,(0< x< \pi), \operatorname{are}$

  • [JEE MAIN 2021]