$\Delta=\left|\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|$ નું મૂલ્ય શોધો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Solution Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1},$ we get

$\Delta=\left|\begin{array}{ccc}
1 & a & b c \\
0 & b-a & c(a-b) \\
0 & c-a & b(a-c)
\end{array}\right|$

Taking factors $(b-a)$ and $(c-a)$ common from $R_{2}$ and $R_{y}$ respectively, we get

$\Delta=(b-a)(c-a)\left|\begin{array}{ccc}
1 & a & b c \\
0 & 1 & -c \\
0 & 1 & -b
\end{array}\right|$

$=(b-a)(c-a)[(-b+c)]$ (Expanding along first column)

$=(a-b)(b-c)(c-a)$

Similar Questions

સાબિત કરો કે $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a b c+b c+c a+a b$

$\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\1&b&{{b^2}}\\1&c&{{c^2}}\end{array}\,} \right| = $

જો $x, y, z$ ભિન્ન હોય અને $\Delta=\left|\begin{array}{lll}x & x^{2} & 1+x^{2} \\ y & y^{2} & 1+y^{2} \\ z & z^{2} & 1+z^{2}\end{array}\right|=0$ હોય, તો સાબિત કરો કે $1+x y z=0$.

$\left| {\,\begin{array}{*{20}{c}}{b + c}& a& a\\b& {c + a}& b\\c& c& {a + b}\end{array}\,} \right| = $

$2\,\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^2} - bc}&{{b^2} - ac}&{{c^2} - ab}\end{array}\,} \right| = $