By using properties of determinants, show that:

$\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{3} & b^{3} & c^{3}
\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $\Delta=\left|\begin{array}{lll}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|$

Applying $C_{1} \rightarrow C_{1}-C_{3}$ and $C_{2} \rightarrow C_{2}-C_{3},$ we have:

$\Delta=\left|\begin{array}{ccc}0 & 0 & 1 \\ a-c & b-c & c \\ a^{3}-c^{3} & b^{3}-c^{3} & c^{3}\end{array}\right|$

$=\left|\begin{array}{ccc}0 & 0 & 1 \\ a-c & b-c & c \\ (a-c)\left(a^{2}+a c+c^{2}\right) & (b-c)\left(b^{2}+b c+^{2}\right) & c^{3}\end{array}\right|$

$ = (c - a)(b - c)\left| {\begin{array}{*{20}{c}}
  0&0&1 \\ 
  { - 1}&1&c \\ 
  { - ({a^2} + ac + {c^2})}&{({b^2} + bc + {c^2})}&{{c^3}} 
\end{array}} \right|$

Applying $C_{1} \rightarrow C_{1}+C_{2},$ we have:

$\Delta=(c-a)(b-c)\left|\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & c \\ \left(b^{2}-a^{2}\right)+(b c-a c) & \left(b^{2}+b c+c^{2}\right) & c^{3}\end{array}\right|$

$=(b-c)(c-a)(a-b)\left|\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & c \\ -(a+b+c) & \left(b^{2}+b c+c^{2}\right) & c^{3}\end{array}\right|$

$=(a-b)(b-c)(c-a)(a+b+c)\left|\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & c \\ -1 & \left(b^{2}+b c+c^{2}\right) & c^{3}\end{array}\right|$

Expanding along $C_{1}$, we have:

$\Delta=(a-b)(b-c)(c-a)(a+b+c)(-1)\left|\begin{array}{cc}0 & 1 \\ 1 & c\end{array}\right|$

$=(a-b)(b-c)(c-a)(a+b+c)$

Hence, the given result is proved.

Similar Questions

Let $f (x) =$ $\left| {\begin{array}{*{20}{c}}{1\, + \,{{\sin }^2}x}&{{{\cos }^2}x}&{4\,\sin \,2x}\\{{{\sin }^2}x}&{1\, + \,{{\cos }^2}x}&{4\,\sin \,2x}\\{{{\sin }^2}x}&{{{\cos }^2}x}&{1\, + \,4\,\sin \,2x}\end{array}} \right|$, then the maximum value of $f (x) =$

Let $z=\frac{-1+\sqrt{3} i}{2}$, where $i=\sqrt{-1}$, and $r, s \in\{1,2,3\}$. Let$P=\left[\begin{array}{cc}(-z)^r & z^{2 s} \\ z^{2 s} & z^r\end{array}\right]$ and $I$ be the identity matrix of order $2$ . Then the total number of ordered pairs $(r, s)$ for which $P^2=-I$ is

  • [IIT 2016]

If $D =$ $\left| {\,\begin{array}{*{20}{c}}{\frac{1}{z}}&{\frac{1}{z}}&{ - \frac{{(x + y)}}{{{z^2}}}}\\{ - \frac{{(y + z)}}{{{x^2}}}}&{\frac{1}{x}}&{\frac{1}{x}}\\{ - \frac{{y(y + z)}}{{{x^2}z}}}&{\frac{{x + 2y + z}}{{xz}}}&{ - \frac{{y(x +y)}}{{x{z^2}}}}\end{array}\,} \right|$ then, the incorrect statement is

Give the correct order of initials $T$ or $F$ for following statements. Use $T$ if statement is true and $F$ if it is false.

Statement $-1$ : If the graphs of two linear equations in two variables are neither parallel nor the same, then there is a unique solution to the system. Statement $-2$ : If the system of equations $ax + by = 0, cx + dy = 0$ has a non-zero solution, then it has infinitely many solutions.

Statement $-3$ : The system $x + y + z = 1, x = y, y = 1 + z$ is inconsistent. Statement $-4$ : If two of the equations in a system of three linear equations are inconsistent, then the whole system is inconsistent.

Let $\alpha $, $\beta$ $\gamma$, $\delta$ are distinct imaginary roots of

$z^5=1$ then value of $\left| {\begin{array}{*{20}{c}}
  {{e^\alpha }}&{{e^{2\alpha }}}&{{e^{3\alpha  + 1}}}&{ - {e^{ - \delta }}} \\ 
  {{e^\beta }}&{{e^{2\beta }}}&{{e^{3\beta  + 1}}}&{ - {e^{ - \delta }}} \\ 
  {{e^\gamma }}&{{e^{2\gamma }}}&{{e^{3\gamma  + 1}}}&{ - {e^{ - \delta }}} 
\end{array}} \right|$