Evaluate the following products without multiplying directly
$78 \times 84$
$7546$
$6552$
$4736$
$4865$
$=(80-2)(80+4)$
$=(80)^{2}+(-2+4)(80)+(-2)(4)$
$=6400+160-8=6552$
Find the zero of the polynomial in each of the following cases
$q(y)=\pi y+3.14$
Factorise :
$a^{3}-8 b^{3}-64 c^{3}-24 a b c$
Factorise the following:
$9 x^{2}-12 x+4$
…… is one of the factors of $p(x)=x^{3}-3 x^{2}+7 x-5$
If $x+y=12$ and $x y=27,$ find the value of $x^{3}+y^{3}$
Confusing about what to choose? Our team will schedule a demo shortly.