Factorise the following:
$9 x^{2}-12 x+4$
We have,
$9 x^{2}-12 x+4=(3 x)^{2}-2(3 x)(2)+(2)^{2}$
$=(3 x-2)^{2}\left[\because a^{2}-2 a b+b^{2}=(a-b)^{2}\right]$
$=(3 x-2)(3 x-2)$
Verify whether the following are True or False:
$-\frac{1}{3}$ is a zero of $3 x+1$
Check whether $p(x)$ is a multiple of $g(x)$ or not, where
$p(x)=x^{3}-x+1, \quad g(x)=2-3 x$
Evaluate $66 \times 74$ without directly multiplying
On dividing $16 x^{2}-24 x+9$ by $4 x-3,$ find the remainder.
Factorise
$8 x^{3}+125 y^{3}+343-210 x y$
Confusing about what to choose? Our team will schedule a demo shortly.