Factorise the following:
$9 x^{2}-12 x+4$
We have,
$9 x^{2}-12 x+4=(3 x)^{2}-2(3 x)(2)+(2)^{2}$
$=(3 x-2)^{2}\left[\because a^{2}-2 a b+b^{2}=(a-b)^{2}\right]$
$=(3 x-2)(3 x-2)$
Write the following cubes in expanded form
$(2 x+7)^{3}$
Write whether the statement are True or False. Justify your answer.
Every polynomial is a binomial
Determine the degree of each of the following polynomials:
$2 x-1$
$x^{3}-9 x+3 x^{5}$
Without actually calculating the cubes, find the value of $48^{3}-30^{3}-18^{3}$
Confusing about what to choose? Our team will schedule a demo shortly.