Evaluate the determinants : $\left|\begin{array}{ll}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$
$\left| {\begin{array}{*{20}{c}}
{\cos \theta }&{ - \sin \theta } \\
{\sin \theta }&{\cos \theta }
\end{array}} \right|$
$ = (\cos \theta )(\cos \theta ) - ( - \sin \theta )(\sin \theta )$
$ = {\cos ^2}\theta + {\sin ^2}\theta $
$ = 1$
if $\left| \begin{gathered}
- 6\ \ \,\,1\ \ \,\,\lambda \ \ \hfill \\
\,0\ \ \,\,\,\,3\ \ \,\,7\ \ \hfill \\
- 1\ \ \,\,0\ \ \,\,5\ \ \hfill \\
\end{gathered} \right| = 5948 $, then $\lambda $ is
Let $S$ be the set of all real values of $k$ for which the system oflinear equations $x +y + z = 2$ ; $2x +y - z = 3$ ; $3x + 2y + kz = 4$ has a unique solution. Then $S$ is
If for some $\alpha$ and $\beta$ in $R,$ the intersection of the following three planes $x+4 y-2 z=1$ ; $x+7 y-5 z=\beta$ ; $x+5 y+\alpha z=5$ is a line in $\mathrm{R}^{3},$ then $\alpha+\beta$ is equal to
Let $\lambda, \mu \in R$. If the system of equations
$ 3 x+5 y+\lambda z=3 $
$ 7 x+11 y-9 z=2 $
$ 97 x+155 y-189 z=\mu$
has infinitely many solutions, then $\mu+2 \lambda$ is equal to :
If $\left| {\begin{array}{*{20}{c}}
{\cos 2x}&{{{\sin }^2}x}&{\cos 4x} \\
{{{\sin }^2}x}&{\cos 2x}&{{{\cos }^2}x} \\
{\cos 4x}&{{{\cos }^2}x}&{\cos 2x}
\end{array}} \right| = {a_0} + {a_1}\sin x + {a_2}{\sin ^2}x + .....$ then $a_0$ is equal to