The value of $\lambda$ and $\mu$ such that the system of equations $x+y+z=6,3 x+5 y+5 z=26, x+2 y+\lambda z=\mu$ has no solution, are :

  • [JEE MAIN 2021]
  • A

    $\lambda=3, \mu \neq 10$

  • B

    $\lambda \neq 2, \mu=10$

  • C

    $\lambda=3, \mu=5$

  • D

    $\lambda=2, \mu \neq 10$

Similar Questions

If $D = \left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right|$ for $x \ne 0,y \ne 0$ then $D$ is

  • [AIEEE 2007]

The value of the determinant$\left| {\,\begin{array}{*{20}{c}}{ - 1}&1&1\\1&{ - 1}&1\\1&1&{ - 1}\end{array}\,} \right|$is equal to

If $a, b, c$ are non-zero real numbers and if the system of equations $(a - 1 )x = y + z,$  $(b - 1 )y = z + x ,$ $(c - 1 )z= x + y,$ has a non-trivial solution, then $ab + bc + ca$ equals

  • [JEE MAIN 2014]

The value of $\left| {\begin{array}{*{20}{c}}
1&x&y\\
2&{\sin x + 2x}&{\sin y + 2y}\\
3&{\cos x + 3x}&{\cos y + 3y}
\end{array}} \right|$ is

The existance of the unique solution of the system of equations$2x + y + z = \beta $ , $10x - y + \alpha z = 10$ and $4x+ 3y-z =6$ depends on