Evaluate the following:
$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
$=\frac{\frac{1}{2}+1-\frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}}+\frac{1}{2}+1}=\frac{\frac{3}{2}-\frac{2}{\sqrt{3}}}{\frac{3}{2}+\frac{2}{\sqrt{3}}}$
$=\frac{\frac{3 \sqrt{3}-4}{2 \sqrt{3}}}{\frac{3 \sqrt{3}+4}{2 \sqrt{3}}}=\frac{(3 \sqrt{3}-4)}{(3 \sqrt{3}+4)}$
$=\frac{(3 \sqrt{3}-4)(3 \sqrt{3}-4)}{(3 \sqrt{3}+4)(3 \sqrt{3}-4)}=\frac{(3 \sqrt{3}-4)^{2}}{(3 \sqrt{3})^{2}-(4)^{2}}$
$=\frac{27+16-24 \sqrt{3}}{27-16}=\frac{43-24 \sqrt{3}}{11}$
Express the trigonometric ratios $\sin A , \sec A$ and $\tan A$ in terms of $\cot A$.
Prove that $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$
$9 \sec ^{2} A-9 \tan ^{2} A=..........$
If $\sin A =\frac{3}{4},$ calculate $\cos A$ and $\tan A$.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$