निम्नलिखित के मान निकालिए :
$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
$=\frac{\frac{1}{2}+1-\frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}}+\frac{1}{2}+1}=\frac{\frac{3}{2}-\frac{2}{\sqrt{3}}}{\frac{3}{2}+\frac{2}{\sqrt{3}}}$
$=\frac{\frac{3 \sqrt{3}-4}{2 \sqrt{3}}}{\frac{3 \sqrt{3}+4}{2 \sqrt{3}}}=\frac{(3 \sqrt{3}-4)}{(3 \sqrt{3}+4)}$
$=\frac{(3 \sqrt{3}-4)(3 \sqrt{3}-4)}{(3 \sqrt{3}+4)(3 \sqrt{3}-4)}=\frac{(3 \sqrt{3}-4)^{2}}{(3 \sqrt{3})^{2}-(4)^{2}}$
$=\frac{27+16-24 \sqrt{3}}{27-16}=\frac{43-24 \sqrt{3}}{11}$
निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
यदि $15 \cot A =8$ हो तो $\sin\, A$ और $sec\, A$ का मान ज्ञात कीजिए।
निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :
$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$
निम्नलिखित के मान निकालिए :
$2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$
$(\sec A+\tan A)(1-\sin A)=..........$