In $\triangle$ $OPQ$, right-angled at $P$, $OP =7\, cm$ and $OQ - PQ =1\, cm$ (see $Fig.$). Determine the values of $\sin Q$ and $\cos Q$.
In $\triangle$ OPQ, we have
$OQ ^{2}= OP ^{2}+ PQ ^{2}$
i.e., $\quad(1+ PQ )^{2}= OP ^{2}+ PQ ^{2}$
i.e., $\quad 1+ PQ ^{2}+2 PQ = OP ^{2}+ PQ ^{2}$
i.e., $\quad 1+2 PQ =7^{2}$
i.e., $\quad PQ =24\,cm$ and $OQ =1+ PQ =25 \,cm$
So, $\sin Q =\frac{7}{25}$ and $\cos Q =\frac{24}{25}$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$
Evaluate the following:
$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
In $\triangle PQR ,$ right $-$ angled at $Q , PR + QR =25\, cm$ and $PQ =5\, cm .$ Determine the values of $\sin P, \cos P$ and $\tan P$.
$(\sec A+\tan A)(1-\sin A)=..........$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$