- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
medium
સમીકરણોની સંપતિની સુસંગતતા ચકાસો : $x+y+z=1$ ; $2 x+3 y+2 z=2$ ; $a x+a y+2 a z=4$
Option A
Option B
Option C
Option D
Solution
The given system of equations is:
$x+y+z=1$
$2 x+3 y+2 z=2$
$a x+a y+2 a z=4$
The system of equation can be written in the form of $A X=B$, where
$A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2 a\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]$
Now,
$|A|=1(6 a-2 a)-1(4 a-2 a)+1(2 a-3 a)$
$=4 a-2 a-a=4 a-3 a=a \neq 0$
$\therefore A$ is a non-singular matrix. Therefore, $A^{-1}$ exists.
Hence, the given system of equation is consistent.
Standard 12
Mathematics