Examine whether the following statements are true or false :
$\{ x:x$ is an even natural number less than $6\} \subset \{ x:x$ is a natural mumber which divide $36\} $
True. $\{ x:x$ is an even natural mumber less than $6\} = \{ 2,4\} $
$\{ x:x$ is a natural number which divides $36\} = \{ 1,2,3,4,6,9,12,18,36\} $
Given the sets $A=\{1,3,5\}, B=\{2,4,6\}$ and $C=\{0,2,4,6,8\},$ which of the following may be considered as universal set $(s)$ for all the three sets $A$, $B$ and $C$
$\varnothing$
Consider the sets
$\phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}$
Insert the symbol $\subset$ or $ \not\subset $ between each of the following pair of sets:
$B \ldots \cdot C$
Assume that $P(A)=P(B) .$ Show that $A=B$.
Consider the sets
$\phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}$
Insert the symbol $\subset$ or $ \not\subset $ between each of the following pair of sets:
$A, \ldots B$
Make correct statements by filling in the symbols $\subset$ or $ \not\subset $ in the blank spaces:
$\{ x:x$ is an even natural mumber $\} \ldots \{ x:x$ is an integer $\} $