Explain error of a sum or a difference.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let two physical quantities $\mathrm{A}$ and $\mathrm{B}$ has measured value $\mathrm{A} \pm \Delta \mathrm{A}$ and $\mathrm{B} \pm \Delta \mathrm{B}$ where,  $(i)$ For addition :

Let $Z$ is quantity obtained by addition of $A$ and $B$.

$\therefore \mathrm{Z}=\mathrm{A}+\mathrm{B}$

Let error is $Z$ be $\Delta Z$

$Z \pm \Delta Z=(A \pm \Delta A)+(B \pm \Delta B)$

$A+B=Z$

$\therefore \pm \Delta Z=\pm \Delta A \pm \Delta B$

For maximum absolute error,

$\Delta Z=\Delta A+\Delta B$

$(ii)$ For Subtraction :

Let difference of $A$ and $B$ is $Z$

$\therefore Z=A -B[\text { Let } A>B]$

$Z \pm \Delta Z =(A \pm \Delta A)-(B \pm \Delta B)$

$=(A-B)-(\pm \Delta A \pm \Delta B)$

$A-B =Z$

$\pm \Delta Z =\pm \Delta A \pm \Delta B$

$For maximum error in $Z$,$

$\Delta Z=\Delta A+\Delta B$

Similar Questions

A body of mass $(5 \pm 0.5) kg$ is moving with a velocity of $(20 \pm 0.4) m / s$. Its kinetic energy will be

  • [JEE MAIN 2023]

Two resistance are measured in $Ohm$ and is given as

$R_1 = 3 \Omega \pm 1\%$  and  $R_2 = 6 \Omega \pm 2\%$ When they are connected  in parallel, the percentage error in equivalent resistance is.......... $\%$

Calculate the mean $\%$ error in five observation

$80.0,80.5,81.0,81.5,82$

  • [AIIMS 2019]

A physical quantity $P$ is given by $P= \frac{{{A^3}{B^{\frac{1}{2}}}}}{{{C^{ - 4}}{D^{\frac{3}{2}}}}}$. The quantity which brings in the maximum percentage error in $P$ is

The mass and volume of a body are found to be $(5.00 ± 0.05)\,kg$ and $(1.00 ± 0.05)\,m^3$ respectively. Then the maximum possible percentage error in its density is .......... $\%$