The relative density of material of a body is found by weighing it first in air and then in water. If the weight in air is ($5.00 \pm 0.05$) Newton and weight in water is ($4.00 \pm 0.05$) Newton. Then the relative density along with the maximum permissible percentage error is
$5.0 \pm 11\%$
$5.0 \pm 1\%$
$5.0 \pm 6\%$
$1.25 \pm 5\%$
A body travels uniformly a distance of $(13.8 \pm 0.2) m$ in a time $(4.0 \pm 0.3) s$. Its velocity with error limits and percentage error is
Out of absolute error, relative error and fractional error which has unit and which has no unit ?
A body of mass $(5 \pm 0.5) kg$ is moving with a velocity of $(20 \pm 0.4) m / s$. Its kinetic energy will be
Calculate the mean $\%$ error in five observation
$80.0,80.5,81.0,81.5,82$
Students $I$, $II$ and $III$ perform an experiment for measuring the acceleration due to gravity $(g)$ using a simple pendulum.
They use different lengths of the pendulum and /or record time for different number of oscillations. The observations are shown in the table.
Least count for length $=0.1 \mathrm{~cm}$
Least count for time $=0.1 \mathrm{~s}$
Student | Length of the pendulum $(cm)$ | Number of oscillations $(n)$ | Total time for $(n)$ oscillations $(s)$ | Time period $(s)$ |
$I.$ | $64.0$ | $8$ | $128.0$ | $16.0$ |
$II.$ | $64.0$ | $4$ | $64.0$ | $16.0$ |
$III.$ | $20.0$ | $4$ | $36.0$ | $9.0$ |
If $\mathrm{E}_{\mathrm{I}}, \mathrm{E}_{\text {II }}$ and $\mathrm{E}_{\text {III }}$ are the percentage errors in g, i.e., $\left(\frac{\Delta \mathrm{g}}{\mathrm{g}} \times 100\right)$ for students $\mathrm{I}, \mathrm{II}$ and III, respectively,