તારના દ્રવ્યનો યંગ મોડ્યુલસ નક્કી કરવાની પ્રાયોગિક રીતે સમજાવો.
તારના દ્રવ્યનો યંગ મોડ્યુલસ નક્કી કરવા માટેની વિશિષ્ટ પ્રાયોગિક ગોઠવણી આકૃતિમાં દર્શવેલ છે.
સ્થિર દઢ આધાર પરથી સમાન લંબાઈ અને સમાન ત્રિજ્યાવાળા બે સુરેખ તારને પાસપાસે લટકાવેલ છે.
સંદર્ભ તાર $A$ મિલિમીટર માપક્રમનો મુખ્ય સ્કેલ $M$ અને વજન મૂકવા માટે પલ્લું ધરાવે છે. નિયમિત આડછેદનું ક્ષેત્રફળ ધરાવતો પરીક્ષણ તાર $B$ પણ પલ્લું ધરાવે છે. જેમાં, જાણીતાં વજનિયા મૂકી શકાય છે.
પરીક્ષણ તાર $B$ ના છેડા દર્શક સાથે વર્નિયર માપક્રમ જોડેલ છે અને સંદર્ભ તાર $A$ સાથે મુખ્ય માપક્રમ $M$ જોડેલ છે. પલ્લામાં મૂકેલાં વજનિયા અદ્યોદિશામાં બળ લગાડે છે અને પરીક્ષણ તાર તણાવ પ્રતિબળની અસર હેઠળ ખેંચાય છે.
વર્નિયરની ગોઠવણી દ્વારા પરીક્ષણ તારની લંબાઈમાં થતો વધારો માપવામાં આવે છે.
ઓરડાના તાપમાનમાં થતાં ફેરફારને કારણે થતો લંબાઈનો ફેરફાર ભરપાઈ કરવા માટે સંદર્ભ તારનો ઉપયોગ કરવામાં આવે છે. કારણ કે, પરીક્ષણની તારની લંબાઈમાં થતો ફેરફાર સંદર્ભ તારની લંબાઈમાં થતાં ફેરફાર જેટલો જ હોય છે.
પરીક્ષણ તાર અને સંદર્ભ તારને સીધા રાખવા માટે બંને તારને પ્રારંભમાં નાના બોજ હેઠળ રાખીને વર્નિયર પરનું અવલોકન નોંધવામાં આવે છે.
હવે પરીક્ષણ તારને તણાવ પ્રતિબળની અસર હેઠળ લાવવા માટે તેના બોજમાં કમશઃ વધારો કરવામાં આવે છે અને વર્નિયરનાં દરેક વખતે અવલોકનો નોંધવામાં આવે છે.
બે વર્નિયર પરના અવલોકનો વચ્ચેનો તફાવત, તારની લંબાઈમાં થયેલો વધારો આપે છે.
ધારો કે, પરીક્ષણ તારની પ્રારંભિક ત્રિજ્યા અને લંબાઈ અનુક્રમે $r$ અને $L$ છે, તો તારના આડછેદનુ ક્ષેત્રફળ $\pi r^{2}$ થશે. ધારો કે, $m$ દળને કારણે તારની લંબાઈમાં $\Delta L$ જેટલો વધારો થાય છે. લાગુ પાડેલ બળ $m g$ જેટલું થશે. જ્યાં $g$ ગુરુત્વપવેગ છે.
તારના દ્રવ્યનો યંગ મોડ્યુલસ,
$Y =\frac{\sigma}{\varepsilon}=\frac{ F / A }{\Delta L / L }=\frac{ FL }{ A \Delta L }$
$=\frac{m g}{\pi r^{2}} \cdot \frac{ L }{\Delta L }$
$Y =\frac{m g L }{\pi r^{2} \Delta L }$
ઉપરના સૂત્રમાં દરેકના જ્ઞાત મૂલ્યો મૂકીને $Y$ શોધી શકાય છે.
જયારે તાર પર $4N$ નું બળ લગાડવામાં આવે ત્યારે તેની લંબાઇ $a$ છે.જયારે $5N$ નું બળ લગાડવામાં આવે ત્યારે તેની લંબાઇ $b$ છે.તો જયારે $9N$ નું બળ લગાડવામાં આવે ત્યારે તેની લંબાઇ કેટલી થાય?
એક ચુસ્ત આધાર પર $L$ લંબાઈ અને $\rho$ ઘનતાનો જાડું લટકાવેલ છે. દોરડાના પદાર્થનું યંગ મોડ્યુલસ $\gamma$ છે. તેના ખુદના વજનના કારણે તેની લંબાઈમાં થતો વધારો
બે સમાન દ્રવ્યના તાર $A$ અને $B$ જેની ત્રિજ્યા અને લંબાઇનો ગુણોત્તર અનુક્રમે $2:1$ અને $4:1$ છે બંનેની લંબાઈમાં સમાન ફેરફાર કરવા માટે લગાવવા પડતાં લંબબળનો ગુણોત્તર કેટલો હોવો જોઈએ $ ?$
નીચેના બધા તાર પર સમાન બળ લગાવવામાં આવે તો લંબાઈમાં મહત્તમ વધારો શેમાં થાય ?
એક તાર પર $W$ વજન લટકાવતાં તે $1 \;mm$ લાંબો થાય છે. જો તારને એક ગરગડી પરથી પસાર કરી તેનાં બંને છેડે વજનો લટકાવવામાં આવે, તો તારની લંબાઈનો કેટલો વધારો ($mm$ માં) થશે?