From the choices given below, choose the equation whose graphs are given in Fig. $(i)$ and Fig. $(ii)$.
For Fig. $(i)$ For Fig. $(ii)$
$(a)$ $y=x$ $(a)$ $y=x+2$
$(b)$ $x+y=0$ $(b)$ $y=x-2$
$(c)$ $y=2 x$ $(c)$ $y=-x+2$
$(d)$ $2+3 y=7 x$ $(d)$ $x+2 y=6$
Write each of the following equations in the form $ax + by + c = 0$ and indicate the values of $a$, $b$ and $c$ in each case :
$(i)$ $2 x+3 y=4.37$
$(ii)$ $x-4=\sqrt{3} y$
$(iii)$ $4=5 x-3 y$
$(iv)$ $2 x=y$
For each of the graphs given in Fig. select the equation whose graph it is from the choices given below :
$(a)$ For Fig. $(i)$,
$(i)$ $x+y=0$ $(ii)$ $y=2 x$ $(iii)$ $y=x$ $(iv)$ $y=2 x+1$
$(b)$ For Fig. $(ii)$,
$(i)$ $x+y=0$ $(ii)$ $y=2 x$ $(iii)$ $y=2x+4$ $(iv)$ $y=x-4$
$(c)$ For Fig. $(iii)$,
$(i)$ $x+y=0$ $(ii)$ $y=2 x$ $(iii)$ $y=2x+1$ $(iv)$ $y=2 x-4$
Check the solutions of the equation $x -2y = 4$ and which are not : $(2,\,0)$
The cost of a notebook is twice the cost of a pen. Write a linear equation in two variables to represent this statement.
(Take the cost of a notebook to be $\rm {Rs.}$ $x$ and that of a pen to be $\rm {Rs.}$ $y$).