2. Polynomials
hard

અવયવ પાડો :  $x^{3}-3 x^{2}-9 x-5$

Option A
Option B
Option C
Option D

Solution

આપણે પ્રયત્નો દ્વારા જાણીએ કે $p(1)=0$ છે કે $p(-1)=0$ છે.

$p(x) =x^{3}-3 x^{2}-9 x-5 $

$\therefore p(1) =(1)^{3}-3(1)^{2}-9(1)-5 $

$=(1)-3(1)-9-5 $

$=1-3-9-5 $

$=1-17$

$\therefore p(1)=-16 \neq 0$ તેથી $p(1) \neq 0$.

$p(x) =x^{3}-3 x^{2}-9 x-5 $

$\therefore p(-1)=(-1)^{3}-3(-1)^{2}-9(-1)-5 $

$=(-1)-3(1)+9-5 $

$=-1-3+9-5 $

$\therefore p(-1) =0$

અહી, $p(-1) =0$ શૂન્ય છે તેથી અવયવ પ્રમેયને આધારે $[x-(-1)]$ એટલે $x + 1$ એ $p(x)$ નો અવયવ થાય.

$\frac{x^{3}-3 x^{2}-9 x-5}{x+1}=x^{2}-4 x-5$

$x^{2}-4 x-5$

$\therefore x^{3}-3 x^{2}-9 x-5 =(x+1)\left(x^{2}-4 x-5\right) $

$=(x+1)\left[x^{2}-5 x+x-5\right]$

$=(x+1)[x(x-5)+1(x-5)]$

$=(x+1)[(x-5)(x+1)]$

$\therefore x^{3}-3 x^{2}-9 x-5=(x+1)(x-5)(x+1)$

Standard 9
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.