- Home
- Standard 12
- Physics
આકૃતિ વિદ્યુત ચતુર્ઘવી $(Electric\, Quadrapole)$ તરીકે ઓળખાતી વિદ્યુતભારોની ગોઠવણ દર્શાવે છે. ચતુર્ધવીની અક્ષ પરના બિંદુ માટે, $r/a\,>\,>\,1$ માટે, સ્થિતિમાન $r$ પર કેવી રીતે આધારિત છે તે દર્શાવતું સૂત્ર મેળવો અને વિદ્યુત ડાયપોલ અને વિદ્યુત મોનોપોલ (એટલે કે એકલ વિદ્યુતભાર) માટેના આવા સૂત્રથી તમારું પરિણામ કેવી રીતે જુદું પડે છે તે જણાવો.

Solution
Four charges of same magnitude are placed at points $X, Y, Y,$ and $Z$ respectively, as shown in the following figure.
A point is located at $P$, which is $r$ distance away from point $Y$. The system of charges forms an electric quadrupole.
It can be considered that the system of the electric quadrupole has three charges.
Charge $+ q$ placed at point $X$
Charge $-2 q$ placed at point $Y$
Charge $+ q$ placed at point $Z$
$Y P=r$
$PX = r + a$
$PZ =r- a$
Electrostatic potential caused by the system of three charges at point $P$ is given by,
$V =\frac{1}{4 \pi \epsilon_{0}}\left[\frac{q}{ XP }-\frac{2 q}{ YP }+\frac{q}{ ZP }\right]$
$=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{q}{r+a}-\frac{2 q}{r}+\frac{q}{r-a}\right]$
$=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{r(r-a)-2(r+a)(r-a)+r(r+a)}{r(r+a)(r-a)}\right]=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{2 a^{2}}{r\left(r^{2}-a^{2}\right)}\right]$
$=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{r^{2}-r a-2 r^{2}+2 a^{2}+r^{2}+r a}{r\left(r^{2}-a^{2}\right)}\right]$
$=\frac{2 q a^{2}}{4 \pi \epsilon_{0} r^{3}\left(1-\frac{a^{2}}{r^{2}}\right)}$
since $\frac{r}{a}\,>\,>\,1$
$\therefore \frac{a}{r} \,<\, <\, 1$
$\frac{a^{2}}{r^{2}}$ is taken as negligible.
$\therefore V=\frac{2 q a^{2}}{4 \pi \epsilon_{0} r^{3}}$
It can be inferred that potential, $V \propto \frac{1}{r^{3}}$
However, it is known that for a dipole, $V \propto \frac{1}{r^{2}}$ And,
for a monopole, $V \propto \frac{1}{r}$