Figure shows the electric lines of force emerging from a charged body. If the electric field at $A$ and $B$ are ${E_A}$ and ${E_B}$ respectively and if the displacement between $A$ and $B$ is $r$ then
${E_A} > {E_B}$
${E_A} < {E_B}$
${E_A} = \frac{{{E_B}}}{r}$
${E_A} = \frac{{{E_B}}}{{{r^2}}}$
A charged particle $q$ is placed at the centre $O$ of cube of length $L$ $(A\,B\,C\,D\,E\,F\,G\,H)$. Another same charge $q$ is placed at a distance $L$ from $O$.Then the electric flux through $BGFC$ is
An electric field $\overrightarrow{\mathrm{E}}=(2 \mathrm{xi}) \mathrm{NC}^{-1}$ exists in space. $\mathrm{A}$ cube of side $2 \mathrm{~m}$ is placed in the space as per figure given below. The electric flux through the cube is .................. $\mathrm{Nm}^2 / \mathrm{C}$
Figure shows the electric field lines around three point charges $A, \,B$ and $C$.
$(a)$ Which charges are positive ?
$(b)$ Which charge has the largest magnitude ? Why ?
$(c)$ In which region or regions of the picture could the electric field be zero ? Justify your answer.
$(i)$ Near $A$ $(ii)$ Near $B$ $(iii)$ Near $C$ $(iv)$ Nowhere
If the electric field is given by $(5 \hat{i}+4 \hat{j}+9 \hat{k})$. The electric flux through a surface of area $20$ units lying in the $Y-Z$ plane will be (in units)
The electric field in a region is given $\vec E = a\hat i + b\hat j$ . Here $a$ and $b$ are constants. Find the net flux passing through a square area of side $l$ parallel to $y-z$ plane