चित्र में एक आवेशित पिण्ड से निकलने वाली वैद्युत बल रेखाएँ दिखाई गई हैं। यदि $A$ तथा $B$ पर वैद्युत क्षेत्र क्रमश: ${E_A}$ व ${E_B}$ हों तथा $A$ व $B$ के बीच की दूरी $r$ है तो
${E_A} > {E_B}$
${E_A} < {E_B}$
${E_A} = \frac{{{E_B}}}{r}$
${E_A} = \frac{{{E_B}}}{{{r^2}}}$
किसी बिंदु आवेश के कारण उस बिंदु को केंद्र मानकर खींचे गए $10\, cm$ त्रिज्या के गोलीय गाउसीय पृष्ठ पर वैध्युत फ्लक्स $-1.0 \times 10^{3} Nm ^{2} / C$ । $(a)$ यदि गाउसीय पृष्ठ की शिज्या दो गुनी कर दी जाए तो पृष्ठ से कितना फ्लक्स गुजरेगा? $(b)$ बिंदु आवेश का मान क्या है?
एक वैद्युत क्षेत्र $(6 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}) \mathrm{N} / \mathrm{C}$ से प्रदर्शित किया गया है। $\mathrm{YZ}$-तल में $30 \hat{\mathrm{i}}$ मी. $^2$ क्षेत्रफल से गुजरने वाला वैद्युत फ्लक्स ($SI$ मात्रक में) है :
चित्र में दिखाये गये बक्से से होकर विधुत क्षेत्र $\overrightarrow{ E }=4 xi -\left( y ^{2}+1\right) \hat{ j } N / C$ निकलता है। यदि बक्से के $ABCD$ तथा $BCGF$ समतलों में से होकर जाने वाले फ्लक्स का मान क्रमश: $\phi_{ I }$ तथा $\phi_{ II }$ है तब इनमें अन्तर $\left(\phi_{ I }-\phi_{ II }\right)$ $\left( Nm ^{2} / C \right)$ में होगा $......$
एक घन के अन्दर $e$ परिमाण के आवेश वाले $8$ द्विध्रुव रखे हैं। घन से निर्गत कुल विद्युत फ्लक्स का मान होगा
एक लम्बे बेलनाकार आयतन में एक समान आवेश घनत्व $\rho$ वितरित है। बेलनाकार आयतन की त्रिज्या $R$ है। एक आवेश कण $(q)$ बेलन के चारों तरफ वृत्ताकार पथ में घुमता है। आवेश कण की गतिज ऊर्जा है $....$