- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
If $A = \left[ {\begin{array}{*{20}{c}}4&2\\{ - 1}&1\end{array}} \right]$and $I$ is the identity matrix of order $2$, then $(A - 2I)(A - 3I) = $
A
$I$
B
$O$
C
$\left[ {\begin{array}{*{20}{c}}1&0\\0&0\end{array}} \right]$
D
$\left[ {\begin{array}{*{20}{c}}0&0\\0&1\end{array}} \right]$
Solution
(b) $(A – 2I)\,(A – 3I) = \left[ {\begin{array}{*{20}{c}}2&2\\{ – 1}&{ – 1}\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}1&2\\{ – 1}&{ – 2}\end{array}} \right]\, = \,\left[ {\begin{array}{*{20}{c}}0&0\\0&0\end{array}} \right] = O$.
Standard 12
Mathematics