3 and 4 .Determinants and Matrices
easy

आव्यूह का सहखंडज (adjoint) ज्ञात कीजिए:

$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

A

$\left[\begin{array}{cc}4 & 2 \\ -3 & 1\end{array}\right]$

B

$\left[\begin{array}{cc}-4 & -2 \\ -3 & 1\end{array}\right]$

C

$\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]$

D

$\left[\begin{array}{cc}4 & -2 \\ 3 & 1\end{array}\right]$

Solution

Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

We have,

$A_{11}=4, A_{12}=-3, A_{13}=-2, A_{22}=1$

$\therefore a d j A=\left[\begin{array}{ll}A_{11} & A_{21} \\ A_{12} &  A_{22}\end{array}\right]=\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.