Find an approximation of $(0.99)^{5}$ using the first three terms of its expansion.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$0.99=1-0.01$

$\therefore(0.99)^{5}=(1-0.01)^{5}$

$ = {\,^5}{C_0}{(1)^5} - {\,^5}{C_1}{(1)^4}(0.01) + {\,^5}{C_2}{(1)^3}{(0.01)^2}$        [ Approximately ]

$=1-5(0.01)+10(0.01)^{2}$

$=1-0.05+0.001$

$=1.001-0.05$

$=0.951$

Thus, the value of $(0.99)^{5}$ is approximately $0.951$

Similar Questions

In the expansion of ${\left( {3x - \frac{1}{{{x^2}}}} \right)^{10}}$ then $5^{th}$ term from the end is :-

The constant term in the expansion of $\left(2 x+\frac{1}{x^7}+3 x^2\right)^5 \text { is }........$. 

  • [JEE MAIN 2023]

If the constant term in the binomial expansion of $\left(\frac{x^{\frac{5}{2}}}{2}-\frac{4}{x^{\ell}}\right)^9$ is $-84$ and the Coefficient of $x^{-3 \ell}$ is $2^\alpha \beta$, where $\beta < 0$ is an odd number, Then $|\alpha \ell-\beta|$ is equal to

  • [JEE MAIN 2023]

The coefficient of $x^4$ in ${\left[ {\frac{x}{2}\,\, - \,\,\frac{3}{{{x^2}}}} \right]^{10}}$ is :

The first $3$ terms in the expansion of ${(1 + ax)^n}$ $(n \ne 0)$ are $1, 6x$ and $16x^2$. Then the value of $a$ and $n$ are respectively