વિસ્તરણનાં પ્રથમ ત્રણ પદોનો ઉપયોગ કરી $(0.99)^{5}$ ની આશરે કિંમત શોધો.
$0.99=1-0.01$
$\therefore(0.99)^{5}=(1-0.01)^{5}$
$ = {\,^5}{C_0}{(1)^5} - {\,^5}{C_1}{(1)^4}(0.01) + {\,^5}{C_2}{(1)^3}{(0.01)^2}$ [ Approximately ]
$=1-5(0.01)+10(0.01)^{2}$
$=1-0.05+0.001$
$=1.001-0.05$
$=0.951$
Thus, the value of $(0.99)^{5}$ is approximately $0.951$
${\left( {2x - \frac{1}{{2{x^2}}}} \right)^{12}}$ ના વિસ્તરણમાં અચળપદ મેળવો.
જો ${\left( {x + 1} \right)^n}$ ના વિસ્તરણમાં $x$ ની ઘાતના કોઈ પણ ત્રણ ક્રમિક પદોનો ગુણોત્તર $2 : 15 : 70$ હોય તો ત્રણેય પદોના સહગુણોકની સરેરાસ મેળવો.
જો ${(1 + x)^n}$ ના વિસ્તરણમાં $2^{nd}$, $3^{rd}$ અને $4^{th}$ પદના સહગુણક સમાંતર શ્રેણી માં હોય તો ${n^2} - 9n$ = . . . .
$\left(2+\frac{x}{3}\right)^{n}$ ના વિસ્તરણમાં જો $x^{7}$ અને $x^{8}$ ના સહગુણક સમાન હોય તો $n$ ની કિમંત મેળવો.
$\left(2 x^{3}+\frac{3}{x^{k}}\right)^{12}, x \neq 0$ નાં દ્રીપદી વિસ્તરણમાં અચળ પદ $2^{8} \cdot \ell$ હોય, જ્યાં $\ell$ અયુગ્મ સંખ્યા હોય તેવા ધનપુર્ણાક $k$ ની સંખ્યા............. છે