Find area of the triangle with vertices at the point given in each of the following: $(2,7),(1,1),(10,8)$
$\frac{43}{2}$ square units
$\frac{45}{2}$ square units
$\frac{49}{2}$ square units
$\frac{47}{2}$ square units
If ${2^{{a_1}}},{2^{{a_2}}},{2^{{a_3}}},{......2^{{a_n}}}$ are in $G.P.$ then $\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{a_{n + 1}}}&{{a_{n + 2}}}&{{a_{n + 3}}} \\
{{a_{2n + 1}}}&{{a_{2n + 2}}}&{{a_{2n + 3}}}
\end{array}} \right|$ is equal to
If $\left| {\begin{array}{*{20}{c}}
{a - b - c}&{2a}&{2a}\\
{2b}&{b - c - a}&{2b}\\
{2c}&{2c}&{c - a - b}
\end{array}} \right|$ $ = \left( {a + b + c} \right)\,{\left( {x + a + b + c} \right)^2}$ , $x \ne 0$ and $a + b + c \ne 0$, then $x$ is equal to
Evaluate the determinant $\Delta=\left|\begin{array}{rrr}1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0\end{array}\right|$
If the following system of linear equations
$2 x+y+z=5$
$x-y+z=3$
$x+y+a z=b$
has no solution, then :
Let $\theta \in\left(0, \frac{\pi}{2}\right)$. If the system of linear equations
$\left(1+\cos ^{2} \theta\right) x+\sin ^{2} \theta y+4 \sin 3 \theta z=0$
$\cos ^{2} \theta x+\left(1+\sin ^{2} \theta\right) y+4 \sin 3 \theta z=0$
$\cos ^{2} \theta x+\sin ^{2} \theta y+(1+4 \sin 3 \theta) z=0$
has a non-trivial solution, then the value of $\theta$ is :