In a third order determinant, each element of the first column consists of sum of two terms, each element of the second column consists of sum of three terms and each element of the third column consists of sum of four terms. Then it can be decomposed into $n $determinants, where $ n$ has the value
$1$
$9$
$16$
$24$
If the system of equations
$ 11 x+y+\lambda z=-5 $
$ 2 x+3 y+5 z=3 $
$ 8 x-19 y-39 z=\mu$
has infinitely many solutions, then $\lambda^4-\mu$ is equal to :
Evaluate the determinants : $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
If the system of linear equations $x+ ay+z\,= 3$ ; $x + 2y+ 2z\, = 6$ ; $x+5y+ 3z\, = b$ has no solution, then
The system of linear equations $3 x-2 y-k z=10$; $2 x-4 y-2 z=6$ ; $x+2 y-z=5\, m$ is inconsistent if