Find the $12^{\text {th }}$ term of a $G.P.$ whose $8^{\text {th }}$ term is $192$ and the common ratio is $2$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Common ratio, $r =2$

Let $a$ be the first term of the $G.P.$

$\therefore a_{8}=a r^{s-1}=a r^{7} \Rightarrow a r^{7}=192 \Rightarrow a(2)^{7}=192 \Rightarrow a(7)^{7}=(2)^{6}(3)$

$\Rightarrow a=\frac{(2)^{6} \times 3}{(2)^{7}}=\frac{3}{2}$

$\therefore a_{12}=a r^{12-1}=\left(\frac{3}{2}\right)(2)^{11}=(3)(2)^{10}=3072$

Similar Questions

The sum of infinite terms of the geometric progression $\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}},\frac{1}{{2 - \sqrt 2 }},\frac{1}{2}.....$ is

Find the sum of the sequence $7,77,777,7777, \ldots$ to $n$ terms.

If $3 + 3\alpha + 3{\alpha ^2} + .........\infty = \frac{{45}}{8}$, then the value of $\alpha $ will be

Find the sum up to $20$ terms in the geometric progression $0.15,0.015,0.0015........$

The sum can be found of a infinite $G.P.$ whose common ratio is $r$