8. Sequences and Series
normal

If $a$,$b$,$c \in {R^ + }$ are such that $2a$,$b$ and $4c$ are in $A$.$P$ and $c$,$a$ and $b$ are in $G$.$P$., then

A

$a^2$, $ac$ and $c^2$ are in $A$.$P$.

B

$c$, $a$ and $a$ + $2c$ are in $A$.$P$.

C

$c$, $a$ and $a$ + $2c$ are in $G$.$P$.

D

$\frac{a}{2}$,$c$ and $c$ -a are in $G$.$P$.

Solution

$b=a+2 c ; a^{2}=b c$

$\Rightarrow a^{2}=(a+2 c) c$

$\Rightarrow a^{2}=a c+2 c^{2}$

$a^{2}-a c=2 c^{2}$       …….$(1)$

$\therefore \quad(1)$ false

Also $a^{2}=c(a+2 c)$

$\Rightarrow$ $(2)$ False and $(3)$ True.

Also, $\frac{a}{2}(a-c)=c^{2}$

$\therefore \quad(4)$ false

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.